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Dirac Particle in an Aharonov-Bohm Potential:
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The structure of the interaction Hamiltonian in the first order S−matrix element of
a Dirac particle in an Aharonov-Bohm (AB) field is analyzed and shown to have
interesting interesting algebraic properties. It is demonstrated that as a consequence
of these properties, this interaction Hamiltonian splits both the incident and outgoing
waves in the the first order S−matrix into their �3

2 −components (eigenstates of the
third component of the spin). The matrix element can then be viewed as the sum of two
transitions taking place in these two channels of the spin. At the level of partial waves,
each partial wave of the conserved total angular momentum is split into two partial
waves of the orbital angular momentum in a manner consistent with the conservation
of the total angular momentum quantum number.
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1. INTRODUCTION

The observation (Feinberg, 1963; Corinaldesi and Rafeli, 1978) that the first
order Born amplitude of a non-relativistic spinless particle in an Aharonov-Bohm
(AB) potential (Aharonov and Bohm, 1959) does not coincide with the exact
amplitude when the latter is expanded to the same order triggered an unusual
interest in the perturbative aspects of this problem. Various remedies for this
essentially mathematical problem were suggested. Examples of some works that
addressed this problem for non-relativistic spinless and spin one-half particles
are Hagen (1995), Boz et al. (1995), Ouvry (1994), Manuel and Tarrach (1994),
Ruijsenaars (1983), Romia and Shikakhwa (2004), Bergman and Lozano (1994),
Hagen (1997), Fainberg et al. (1998). For a Dirac particle, the success of the Born
amplitude in providing results consistent with the exact amplitude expanded to the
same order was demonstrated for the first order amplitude in Vera and Schmidt
(1990), and for the second order in Boz and Pak (2000). A partial wave calculation
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of the first order amplitude was also recently reported (Shikakhwa and Pak, 2003)
where consistency with the exact amplitude was also established.

The present work focuses on the interaction Hamiltonian in the first order
S−matrix element of a Dirac particle. The algebraic properties of this interaction
Hamiltonian reported partially for the first time in a cursory manner in Shikakhwa
and Pak (2003) are exploited in depth and new interesting properties are reported.
In particular, we note the major focus in the above work is on carrying out
partial wave analysis of the first order Born amplitude of a Dirac particle in an
AB potential using the basis of the conserved angular momentum operator. In
the present work, on the other hand, the emphasis is not on the calculations, no
amplitudes or so are reported. It is an analysis of the structure of the first order
S-matrix in view of the algebraic properties of the interaction Hamiltonian. These
analysis which are carried out without using any explicit wave functions enjoy an
intrinsic importance by themselves and provide a new insight (as will be shown)
into the structure of the first order transition in the AB potential. Verification of
this structure using explicit wave functions is also given.

2. FORMALISM

A Dirac particle in an electromagnetic field is governed by the Hamiltonian
(h = c = 1):

H = H0 + Hint (1)

where

H0 = α · p + βm (2)

and

Hint = eA0 − eα · A. (3)

Here, e is the charge of the particle, αi = βγi and β = γ4. The γ ’s are the Dirac
matrices: {γµ, γν} = 2gµν . While most of the treatment in this paper is independent
of the explicit representation of these matrices, the Dirac-Pauli representation is
used whenever called for:

γ i =
(

0 σ i

−σ i 0

)
, γ 4 =

(
I 0

0 −I

)
, (4)

where σi’s (i = 1, . . . , 3) are the Pauli matrices, and I is the 2 × 2 identity matrix.
The first order S-matrix element for the particle is:

S
(1)
f i = −i

∫
d4x ψ̄f (x)

(
eγµAµ

)
ψi (x). (5)
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For the AB-potential (Aharonov and Bohm, 1959), we have:

A0 = 0, (6)

and

A = �

2πρ
ε̂ϕ, (7)

where ρ =
√

x2 + y2, ε̂ϕ is the unit vector in the ϕ-direction, and � is the flux
through the AB tube. The first order S-matrix in this case can then be written in
the form:

S
(1)
f i = iα

∫
dρ dϕ ψ

†
f (x) (O+ + O−)ψi (x). (8)

Here, α = −e�/2π (in perturbative calculations 0 < α < 1). The z degree of
freedom in the above matrix element was suppressed, since the z-component of
the momentum of the particle-as is well-known-is conserved in the transition. This
simplifies the treatment and does not introduce any loss of generality. An overall
energy conserving δ-function was also suppressed.The O± operators introduced
above are defined as:

O± ≡
(

α2 ± iα1

2

)
e±iϕ (9)

The above operators (note that Hint = O++O−
ρ

) have interesting properties. One

can easily check the following properties (�i = i
2 [γi, γj ]; i, j = 1, . . . , 3):

[O+,O−] = −2

(
�3

2

)
(10)

{O+,O−} ≡ O+O− + O−O+ = I (11)

(O±)† = O
∓

(12)

(O±)2 = 0. (13)

Moreover, the algebra of O± with the third components of the spin, �3
2 , and the

orbital angular momentum, L3, is also interesting;[
�3

2
,O±

]
= ∓O± (14)

[L3,O
±] = ±O± = −

[
�3

2
,O±

]
(15)

{
�3

2
,O±

}
= 0. (16)
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Equations (14) and (15) suggest that the O± operators play the role of raising and
lowering operators in the space of the eigenstates of �3

2 and L3. Now, products of
the O± operators give rise to the following two Hermitian operators:

P ± ≡ O∓O± (17)

which, in view of Eqs. (10) and (11) have the explicit forms

P ± = 1

2
± �3

2
(18)

These two operators have a series of interesting properties that follow from the set
of equations, Eqs. (10–13)

(P ±)2 = P ± (19)

P +P − = P −P + = 0 (20)

P + + P − = {O+,O−} = I. (21)

Eq. (18), on the other hand leads to the following remarkable property of P ±:

�3

2
P ± = ±1

2
P ±. (22)

The above properties suggest that P ± is a projection operator. Indeed, for an
arbitrary Dirac spinor �, we have:

(P + + P −)� = P +� + P −� = � (23)

with P +� (P −�) being, in view of Eq. (22), an eigenstate of �3
2 with eigenvalue

+ 1
2 (− 1

2 ). Thus, P ± project out �3
2 eigenstates with ± 1

2 eigenvalues out of an
arbitrary �, thus allowing the splitting of this � into a linear combination of these
eigenstates. The following properties of the products of P ± and O± follow by
invoking Eq. (13):

P +O+ = P −O− = O+P − = O−P + = 0 (24)

O+ = O+P + = P −O+P + (25)

O− = O−P − = P +O−P −. (26)

The following brackets can also be easily verified:

[O±, P +] = ∓O± (27)

[O±, P −] = ±O± = −[O±, P +] (28)[
�3

2
, P ±

]
= [L3, P

±] = 0. (29)
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Before leaving this section, we record the following major result, which is a
consequence of Eqs. (11), (22), (25) and (26):

�3

2
O± = ∓1

2
O±. (30)

This relation says that O± acting on any arbitrary � project it onto an eigenstate
of �3

2 with eigenvalues ∓ 1
2 .

3. THE FIRST ORDER S−MARTRIX

In this section, we will consider the consequences of the formalism developed
above on the first order scattering matrix element. We start by writing Eq. (8) in
the form

S
(1)
f i = iαM (31)

where

M =
∫

dρdϕψ
†
f (x)(O+ + O−)ψi(x)

= f 〈ξ ′|(O+ + O−)|ξ 〉i . (32)

In the second line of the above equation we have switched to the Dirac notation
which will be adapted now on. The labels ξ and ξ ′ denote the set of all quantum
numbers of the initial and final states, respectively. This includes, for example,
the quantum numbers of the free Hamiltonian H0; a spin operator that commutes
with H0 . . . etc. This set does not include the quantum numbers of �3

2 , as this does
not commute with the free Hamiltonian and is not a constant of the transition. The
amplitude M; Eq. (32), with the aid of Eqs. (25) and (26) can be written as

M =f 〈ξ ′|P −O+P +|ξ 〉i +f 〈ξ ′|P +O−P −|ξ 〉i (33)

which, as a consequence of Eq. (22) reduces to

M =f

〈
η′,

−1

2

∣∣∣∣O+
∣∣∣∣η,

+1

2

〉
i

+f

〈
η′,

+1

2

∣∣∣∣O−
∣∣∣∣η,

−1

2

〉
i

. (34)

The states |η, ±1
2 〉i and |η′, ±1

2 〉f (± 1
2 in the above states are the quantum numbers

of �3
2 ) are, respectively, the �3

2 −components of the initial and final free particle
states. These are projected out of these states through the action of the operators
P ± in accordance with Eq. (22). η and η′ are the set of all the other quantum
numbers of the states, which are generally different from ξ and ξ ′. The picture
drawn by the above equation is that in the first order matrix element, the two
operators O± constituting the effective interaction Hamiltonian split both the
incident and outgoing waves into their �3

2 −components ( the two eigenstates of
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�3
2 ). The transition, is then the sum of two transitions induced by O+ and O−, with

O+ (O−) linking only the �3
2 −component of the incident wave with eigenvalue

+ 1
2 (− 1

2 ) to the �3
2 −component of the outgoing wave with eigenvalue − 1

2 (+ 1
2 ).

Equation (30) , on the other hand, tells us that the states O±|η,± 1
2 〉i are eigenstates

of �3
2 with eigenvalues ∓ 1

2 . This means that the O± operators flip the spin of the
�3
2 states. Thus, we can define new states∣∣∣∣ ̂

η,∓1

2

〉
i

≡ O±
∣∣∣∣η,±1

2

〉
i

(35)

(note the change ± 1
2 → ∓ 1

2 in the �3
2 quantum number). We then write the

transition matrix M as

M =f

〈
η′,

−1

2

∣∣∣∣ ̂
η,

−1

2

〉
i

+f

〈
η′,

+1

2

̂∣∣∣∣η,
+1

2

〉
i

. (36)

The picture is even more interesting when one works with partial waves
(Shikakhwa and Pak, 2003). Here, one expands the incident and outgoing plane
waves of the S−matrix in terms of the J−waves that are eigenstates of the set of
commuting operators: The total angular momentum operator J3 = L3 + �3

2 , the
Hamiltonian H0 and the spin operator S3 ≡ β�3;

H0

∣∣∣∣E, j = l + 1

2
, s

〉
= E

∣∣∣∣E, j = l + 1

2
, s

〉

J3

∣∣∣∣E, j = l + 1

2
, s

〉
= j3

∣∣∣∣E, j = l + 1

2
, s

〉
=

(
� + 1

2

) ∣∣∣∣E, j = l + 1

2
, s

〉
,

� = 0,±1, . . . .

S3

∣∣∣∣E, j = l + 1

2
, s

〉
= s

∣∣∣∣E, j = l + 1

2
, s

〉
, s = ±1, (37)

The S−matrix is then given as a sum over the partial amplitudes Ml (see Section 4.
below):

Ml =
〈
E, j = l + 1

2
, s

∣∣∣∣ O+ + O−
∣∣∣∣E, j = l + 1

2
, s

〉
. (38)

The conserved J3 quantum number j is set to l + 1
2 , l = 0 ± 1,±2, . . .. The

quantum numbers s also survives the transition as well as the corresponding
operator is also conserved. The above J−waves which are energy eigenstates as
well, are not eigenstates of �3

2 nor of L3. Equations (25) and (26), along with Eq.
(22) have the following consequences:

O+
∣∣∣∣E, j = l + 1

2
, s

〉
= P −O+

∣∣∣∣λ, j = l + 1

2
, s; l,+1

2

〉
(39)
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O−
∣∣∣∣E, j = l + 1

2
, s

〉
= P +O−

∣∣∣∣λ, j = l + 1

2
, s; l + 1,−1

2

〉
. (40)

The states on the R.H.S are the components of the J−waves that are eigenstates
of the operators L3 and �3

2 with eigenvalues l, l + 1 and ± 1
2 , respectively. We

denote these with the L−waves. λ is a collective index for any other possible
quantum number; energy is not one of these , however. The quantum numbers of
�3
2 and L3 in the above L−waves have been fixed by the use of Eq. (23), the fact

that j is conserved and fixed to l + 1
2 , and that [J3, L3] = [S3, L3] = [J3,

�3
2 ] =

[S3,
�3
2 ] = 0. Plugging Eqs. (39) and (40) into (38) , and allowing P ± to act to the

left, we get

Ml =
〈
λ′, j = l + 1

2
, s; l + 1,−1

2

∣∣∣∣O+
∣∣∣∣λ, j = l + 1

2
, s; l,+1

2

〉

+
〈
λ′, j = l + 1

2
, s; l,+1

2

∣∣∣∣O−
∣∣∣∣λ, j = l + 1

2
, s; l + 1,−1

2

〉
. (41)

The incident and outgoing J−waves are split by the interaction into their L−wave
components, with O+ (O−) linking incident L−waves with the set of eigenvalues
l,+ 1

2 (l + 1,− 1
2 ) to outgoing L−waves with the set of eigenvalues l + 1,− 1

2
(l,+ 1

2 ). Note that the action of O± on the initial L−waves leads to raising or
lowering of the quantum numbers of the operators L3 and �3

2 as dictated by
Eqs. (14) and (15). Note also that this takes place in a manner that conserves the
total angular momentum quantum number j = l + 1

2 . So, we can again define new
states:

∣∣∣∣ξ, j = l + 1̂

2
, s; l + 1,−1

2

〉
≡ O+

∣∣∣∣ξ, j = l + 1

2
, s; l,+1

2

〉
(42)

∣∣∣∣ξ, j = l + 1̂

2
, s; l,+1

2

〉
≡ O−

∣∣∣∣ξ, j = l + 1

2
, s; l + 1,−1

2

〉
. (43)

4. THE MATRIX ELEMENT USING EXPLICIT WAVE FUNCTIONS

In this section, explicit partial wave functions are going to be used to verify
the results of the previous section. The incident and outgoing wave functions in
the matrix element, Eq. (8), are expanded in terms of the eigen functions of the
conserved total angular momentum operator J3. These functions ( J−waves) that
are simultaneous eigen functions of the set of operators H0, J3 and S3 = β�3 in
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accordance with Eq. (37) have the explicit form (Shikakhwa and Pak, 2003):

ψ�s (x) = ei�ϕ

√
2π

√
2E

√
2s

⎛
⎜⎜⎜⎜⎜⎝

√
E + sm

√
s + 1J� (ξ )

iε3e
iϕ

√
E − sm

√
s − 1J�+1 (ξ )

ε3
√

E + sm
√

s − 1J� (ξ )

ieiϕ
√

E − sm
√

s + 1J�+1 (ξ )

⎞
⎟⎟⎟⎟⎟⎠ . (44)

Here J� (ξ ) is the Bessel function of order � (ξ = p⊥ρ), and ε3 = sgn(s). p⊥ is the
magnitude of the planar momentum. The above eigen functions are normalized as∫

dρ dϕ ψ
†
�′s ′ (x) ψ�s (x) = 1

p⊥
δ
(
p⊥ − p′

⊥
)
δ��′δss ′ . (45)

If one takes ψi (x) and ψf (x) to be eigenstates of S3 as well, then one can verify
the following expansion of these in terms of the ψ�s(x) functions (Shikakhwa and
Pak, 2003):

ψi (x) =
√

Ei

∑
�

(i)�ψ�s (x)

ψf (x) = √
Ef

∑
�

(i)�e−i�θψ�s (x). (46)

where θ is the scattering angle. So, the first order S−matrix element, Eq. (8), takes
the form

S
(1)
f i = iαE

∑
�

(i)�
∑
�′

(−i)�
′
ei�′θM� (47)

where M� is now given by

M� =
∫

dρ dϕ ψ
†
�′s ′ (x)(O+ + O−)ψ�s(x) (48)

with O± as defined earlier. It is easy to check now that

(P + + P −)ψ�s (x) = ψ�s (x) = P +ψ�s (x) + P −ψ�s (x)

= φ�,+ 1
2

(x) + φ�+1,− 1
2

(x) (49)

where the functions

φ�,+ 1
2

(x) = 1√
2π

√
2E

√
2s

⎛
⎜⎜⎜⎜⎝

√
E + sm

√
s + 1J� (ξ ) ei�ϕ

0

ε3
√

E + sm
√

s − 1J� (ξ ) ei�ϕ

0

⎞
⎟⎟⎟⎟⎠ (50)
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φ�+1,− 1
2

(x) = 1√
2π

√
2E

√
2s

⎛
⎜⎜⎜⎜⎝

0

iε3
√

E − sm
√

s − 1J�+1 (ξ ) ei(�+1)ϕ

0

i
√

E − sm
√

s + 1J�+1 (ξ ) ei(�+1)ϕ

⎞
⎟⎟⎟⎟⎠ (51)

are easily checked to be eigenstates of �3
2 and L3-as they should be- with eigen-

values + 1
2 (− 1

2 ) and l (l + 1), respectively. Thus, with the use of Eqs. (24)–(26)
we have now M� as:

M� =
∫

dρdϕ
(
φ
†
�+1,− 1

2
(x) O+φ�,+ 1

2
(x) + φ

†
�,+ 1

2
(x) O−φ�+1,− 1

2
(x)

)
(52)

which is just Eq. (41). Note that the primes on the quantum numbers have been
dropped as the matrix element is diagonal in these quantum numbers since
the corresponding operators J3 and S3 = β�3 are conserved. Now, following
Eqs. (42) and (43), we define

φ̂�+1,− 1
2
(x) = O+φ�,+ 1

2
(x) = 1√

2π
√

2E
√

2s

⎛
⎜⎜⎜⎜⎝

0

iε3
√

E + sm
√

s − 1J� (ξ ) ei(�+1)ϕ

0

i
√

E + sm
√

s + 1J� (ξ ) ei(�+1)ϕ

⎞
⎟⎟⎟⎟⎠

(53)

φ̂�,+ 1
2
(x) = O−φ�+1,− 1

2
(x) = 1√

2π
√

2E
√

2s

⎛
⎜⎜⎜⎜⎝

√
E − sm

√
s + 1J�+1 (ξ ) ei�ϕ

0

ε3
√

E − sm
√

s − 1J�+1 (ξ ) ei�ϕ

0

⎞
⎟⎟⎟⎟⎠ .

(54)

It is a trivial task to check that φ̂�+1,− 1
2

(x) and φ̂�,+ 1
2

(x) are eigenstates of �3
2 and

L3 with the indicated eigenvalues. At this point, with the explicit wave functions
at hand, it would be interesting to investigate the relation between the L−waves
φ̂�,+ 1

2
(x) (φ̂�+1,− 1

2
(x)) and the incident L−waves φ�,+ 1

2
(x) (φ�+1,− 1

2
(x)). Com-

paring Eqs. (50) and (53), for example, we see that φ̂�,+ 1
2

(x) is -apart from a
constant- the same as φ�,+ 1

2
(x) except for the order of the Bessel function which

is shifted by +1 in the former. It is, on the other hand, shifted by −1 in φ̂�+1,− 1
2

(x)
in comparison to φ�+1,− 1

2
(x). This shift in the order of the Bessel function gives

rise to the phase shift of each partial amplitude. It was shown in Shikakhwa and
Pak (2003) that the integral in the partial amplitudes M� reduces to an integral
over Bessel functions of the form

∫
dρJ�+1J�, and this integral gives the partial
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phase shifts. Thus, The operators O±, while flipping the spin and orbital angular
momentum quantum numbers of each ingoing L−wave to match that of the out-
going one, keeps the order of the Bessel functions in the two waves shifted by ±1
so as to generate the the phase shifts in the scattering process. To put this on more
formal grounds, we define the two operators d±:

d± ≡
(

∂ρ ± i

ρ
∂ϕ

)
=

(
∂ρ ∓ L3

ρ

)
(55)

that satisfy

[d±, L3] =
[
d±,

�3

2

]
= 0. (56)

We note that these operators - upon employing the well-known recurrence relations
of Bessel functions- have the property

d+J� (ξ ) ei�ϕ = −p⊥J�+1 (ξ ) ei�ϕ (57)

d−J�+1 (ξ ) ei(�+1)ϕ = p⊥J� (ξ ) ei(�+1)ϕ. (58)

Therefore, we can now write:

φ̂�+1,− 1
2

(x) = O+φ�,+ 1
2

(x) = 1

p⊥

√
E + sm

E − sm
d−φ�+1,− 1

2
(x) (59)

φ̂�,+ 1
2

(x) = O−φ�+1,− 1
2

(x) = − 1

p⊥

√
E − sm

E + sm
d+φ�,+ 1

2
(x). (60)

Substituting the above two equations into Eq. (52), we get:

M� = 1

p⊥

∫
dρdϕ

[√
E + sm

E − sm

(
φ
†
�+1,− 1

2
(x) d−φ�+1,− 1

2
(x)

)

−
√

E − sm

E + sm

(
φ
†
�,+ 1

2
(x)d+φ�,+ 1

2
(x)

)]
. (61)

The above equation says that we can write each partial amplitude as a sum of
two transitions, with each one being a transition among two L−waves that have
the same L3 and �3

2 quantum numbers. These L−waves are connected by the d±

operators which merely affects the radial component of each partial wave, thus
inducing the partial phase shifts. It is interesting indeed that in each of the two
terms of the amplitude, the quantum numbers of the orbital angular momentum
L3 and the spin �3

2 are conserved in the transition. It is as if we have replaced the
L3 and �3

2 non-conserving interactions O± with the d± interactions that conserve
these quantum numbers at the level of each partial L−wave.
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5. CONCLUDING REMARKS

A new insight into the structure of the first order S-matrix of a Dirac particle
in an AB potential was provided through the derivation of interesting algebraic
properties of the interaction Hamiltonian appearing in the matrix element. It was
shown that the interaction Hamiltonian is the sum of the two operators O± and
algebraic properties of these and related operators were reported. The fact that
these operators have the properties (Eqs. (25), (26)) O± = P ∓O±P ± along with
the fact that �3

2 P ± = ± 1
2P ± (Eq. (22)), were shown to suggest the following

picture of the transition matrix element: The interaction splits both the incident
and outgoing plane waves into their (unconserved) �3

2 components so that the
matrix element is the sum of two transitions from two initial eigenstates of the
�3
2 operator to final eigenstates of the same operators. Each of the operators

O±, by flipping the spin as a result of the property (Eq. (30)) �3
2 O± = ∓ 1

2O±,
links only the states with opposite spin quantum numbers.The transition, then,
becomes the sum of two transitions induced by the two operators , each taking
place in one of the spin channels. At the level of partial waves, the transition in
each partial amplitude is the sum of two transitions taking place among the two
unconserved L−wave components of each incident and outgoing J−wave.The
fact that the total angular momentum of each partial wave is conserved leads to
a flip not only of the �3

2 quantum number , but also of the L3 quantum number
in the transition. Working with explicit partial wave functions, we have shown
that it is possible to write each partial amplitude as the sum of two transitions,
induced by a couple of two new operators, d±, taking place among L−partial wave
functions such that the �3

2 and L3 quantum numbers are conserved in each of these
transitions.

Finally, note that in deriving Eq. (34), no assumptions were made regarding
the spin operator that one chooses to diagonalize with the free Hamiltonian. In the
case of partial wave analysis (Eq. (41)), however, the spin operator was taken to
be S3 = β�3. The result, however, depends only on the fact that this spin operator
commutes with the operators O±, i.e is a constant of the transition. Any other spin
operator having this property will lead to the same result.
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